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One of the recent developments in harnessing wave energy is to  construct a line of 
submerged structures parallel to  the incident swell crests in order to  transform the 
straight crests to circular crests converging to  a focus. To understand the neigh- 
bourhood of the focus, we have carried out theoretical studies by accounting for 
diffraction and nonlinearity, both separately and jointly. Experiments have also been 
conducted in a large outdoor basin and are compared with the theories. These 
comparisons tend to favour the approximate nonlinear theory, but the efficiency of 
the focusing device as an energy concentrator does not appear to be significantly 
impaired by nonlinear effects. 

1. Introduction 
The rnotivation for the work described in this paper stems from our effort to focus 

ocean swells for power-production purposes. I n  order to determine the feasibility of 
this idea, experiments have been carried out in an outdoor man-made basin a t  Elnes, 
40 km north of Oslo. The basin has a depth of 3 m, a length of 150 m and a width 
of 100 m. 

A typical set-up for a focusing experiment is illustrated in figure 1 .  Figure 1 ( a )  
shows a photograph of the test basin during an experiment, and figure 1 ( b )  shows 
schematically the set-up discussed in this paper. A wave generator produces a 
diverging circular wave that is incident upon a lens for water waves. The lens has 
the ability to transform the diverging circular wave coming from the generator into 
a Converging circular wave with focal point a t  a distance zo behind the lens. The wave- 
length is typically around 1 m in the experiments. I n  the experiment discussed in this 
paper, the width of the lens is 33.17 m, the distance from the wave generator to  the 
lens is 60 m, and the distance from the lens to  the geometrical focal point is zo = 60 m. 

Lenses for water waves may consist of submerged structures. The functioning and 
construction of such lenses are described in Mehlum & Stamnes (1978); Lmhaugen 
( 1 9 8 1 ~ ) ;  Heier (1981), and the details of the experimental procedure and signal 
processing are given in Luvhaugen (1981b). For our present purposes it suffices to 
say that the wave experiences a phase change as it passes over the lens, and the lens 
is constructed so as to give a non-uniform phase change which transforms a diverging 
wave to a converging wave. The mathematical model used to calculate the phase 
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Lens for water waves l ( b )  

FIGURE 1. Illustration of a wave-focusing experiment. ( a )  is a photograph of a part of the test basin 
showing the wave as it passes over the lens during an experiment (Photo: NTB). ( h )  shows the 
geometry of the experiment discussed in the text. The focal distance is z,, = 60 m, the width of the 
lens is 2a = 33.17 m, and the measurement area is 20 x 40 m2. The wavelength used in the 
experiment is h = 1 m, which gives a value of uz = 28.805 (cf. (2.9)). 

change of a lens element as a function of its depth, size and shape is presented in 
Mehlum (1980). 

Recently, methods have been developed that are suitable for studying water waves 
in focal regions within the framework of linear theory (Stamnes 1981; Stamnes, 
Ljunggren & Spjelkavik 1981). The results of these methods have been compared with 
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experimental results obtained a t  the Elnes test facilities. As long as the amplitude 
of the wave produced by the generator is relatively small one finds good agreement 
between the results of the linear theory and those of experiments (Lmhaugen 1981 a ;  
Heier 1981). 

As the amplitude of the wave that is incident upon the lens increases, nonlinear 
effects start to  play a role in the focal region. I n  order to determine how the nonlinear 
effects influence the energy distribution of the waves in the focal region, one needs 
a theory of nonlinear propagation of water waves that applies to focusing. A general 
nonlinear theory of this kind has not yet been developed. However, for small 
convergence angles i t  is possible to  apply a nonlinear theory, based on a cubic 
Schrodinger equation, which may be solved numerically at a surprisingly moderate 
computing effort. The main objective of this paper is to  compare the results of this 
theory with those obtained experimentally a t  the Elnes test facilities. 

The paper is organized as follows. I n  $ 2  the exact linear theory and its parabolic 
approximation are given. The latter is shown to be quite accurate even for a rather 
large convergence angle corresponding to the experimental set-up at Elnes. The basic 
results of the nonlinear parabolic theory are presented in $3,  and the results of the 
nonlinear theory in its linear limit are compared with those of the linear parabolic 
theory in $ 2 .  I n  $4 we decompose the wave field at lines parallel to the lens into a 
superposition of plane waves, and show how the amplitude of each individual plane- 
wave component in the nonlinear theory evolves with increasing distance from the 
lens to the line of observation. A description of the experiment, and the processing 
of the experimental data is given in $ 5 ,  and comparisons of results of linear and 
nonlinear theories with those of experiments are presented in $6. The main results 
of the paper are summarized in $7 .  

2. Exact linear theory and its parabolic approximation 

assume that the amplitude ~ ( r ,  z )  of the free-surface displacement 
Within the linear theory of wave propagation in water of constant depth we may 

Re { ~ ( x ,  z )  exp (-iwt)} 

satisfies the two-dimensional Helmholtz equation 

whose solution may be written either in terms of an impulse-response integral or an 
angular-spectrum representation, i .e. 

( 2 . 2 b )  

where H p ) ( k r )  is the first-order Hankel function of the first kind, k = 21t/h, h being 
the wavelength, and 

r = [ ( x - x ’ ) 2 + z 2 ] 4 ,  (2.3) 

q ( k , , z )  = q(k,,0)exp[i(k2--~)lz]. (2 .4U)  
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Note that $(kx, 0) is the angular spectrum of plane waves propagating in the direction 
k = (kx, (k2-kx)i) into the half-plane z > 0. Since 

+?(k,, z o )  is the angular spectrum of plane waves propagating into the half-plane z > zo. 
It follows from (2.2b) that the angular spectrum f(k,, z )  is the Fourier transform of 
the field, i.e. 

m 

$(k,, z )  = ~ ( s ,  z )  exp [ - ik, X] dz. ( 2 . 4 ~ )  

The boundary value q ( s , O )  pertaining to a wave of unit amplitude that converges 
to a focal point at  (0, z o ) ,  as illustrated in figure 1 ( b ) ,  is given by 

-m 

q(z,O) = qoexp[-ikro], ro = ( X ~ + Z ; ) &  (2.5) 

within the aperture of the lens. Equations (2.2)-(2.5) constitute what we shall here 
denote the exact linear theory of focusing. A thorough discussion of this theory and 
examples of its application may be found in Stamnes (1981) and Stamnes et al. (1981), 
along with algorithms for efficient computation of the integrals in (2.2) and (2.4b). 

The parabolic approximation pertains to the case of small angles of convergence, 
i.e. 0, in figure l ( b )  is small. Then the Helmholtz equation may be simplified by 
substituting the ansatz 

q(x, z )  = A(x, z )  exp (ikz) (2.6) 

into (2.1) and neglecting the term a2A/az2, since A(x, z )  is supposed to vary slowly 
in the z-direction. As a result we obtain the so-called parabolic wave equation 

We now introduce scaled coordinates 

X Z x = -  z = -  
a '  20 

where 2a is the width of the lens. Equation (2.7) then becomes 

ka2 
0, c T 2 = - - .  

aA i a2A ---.-= 
az wax2 20 

The parameter g should be of order unity for the parabolic approximation to be valid. 
The solution of (2.9) is given by 

where 

with 

B ( f x ,  2) = A ( X ,  2) exp [ - i fx  XI dX. 
-03 

(2.10a) 

(2.10 b )  

(2.10c) 
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Using the convolution theorem we may write ( 2 . 1 0 ~ )  in the form of an impulse- 

A(X, 2) = rm A ( X ,  0) G(X-X,  2) dX', 

response integral, i.e. 

( 2 . 1 1 ~ )  

where 

G(X,Z) = 'sm exp[i(fxX- g 2 ) ] d f x  
2 - m  

(2.11 6) 

In  the parabolic approximation the boundary value (2.5) becomes (cf. (2.6) and (2.8)) 

A ( X ,  0) = A,  exp [ --$ju2X2]. (2.12) 

The importance of imposing the parabolic approximation not only on the angular 
spectrum (cf. (2.10b)) or the impulse response (cf. (2.11b)), but also on the boundary 
value (2.12), has been pointed out recently (Southwell 1981). 

We consider two different focusing geometries. In  the first case (case I) the lens 
is assumed to fill an opening in a breakwater. The appropriate boundary value then 
is 

(2.13) 

which represents approximately a circular crest of unit amplitude having zero phase 
a t  1x1 = 1.  

In  the other case (case 11) the lens is surrounded by deep water, so that we have 

(2.14) 

Substitution of (2.13) and (2.14) in (2.11) yields 

A'I(X, 2) = AYX, 2) + A o -  d(g) exp ( -$a) (Cfu,) + C(u,) + i[S(u,) +S(u2)]), 
(2.15) 

where C(u) and X(u) are the Fresnel integrals 

C(u) = (:)' Ju cos t2 dt, 

S(u) = (:)'Iu sin t 2  dt, 

0 

0 

and 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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FIGURE 2. Plots of the wave amplitude as computed using the exact linear theory ((2.2)-(2.5), solid 
curve) and the parabolic linear theory ((2.19), dashed curve) for observation points on the focal line 
z = z,, in (a )  and on the z = 0 axis in (b) .  The focusing geometry is the same as shown in figure 1 (b) ,  
corresponding to r2 = 28.805, and the boundary value is assumed to vanish outside the lens (cf. 
(2.13)). 

The computation of A1(X, 2) in (2.19) proceeds quickly by means of an algorithm 
that has been developed specially for that  kind of an  integral (Stamnes, Spjelkavik 
& Pedersen 1983). This algorithm involves the Fresnel integrals for values of IyI larger 
than 0.6; for smaller values of 171, exp (iyt2) is expanded in a Taylor series and each 
term in the resulting integrand is integrated analytically. 

A comparison of the results of the exact linear theory ((2.2)-(2.5)) with those 
of the parabolic linear theory ((2.15)-(2.21)) has been made for cr2 = 28.805, 
which corresponds to its actual value in the experiment to be discussed, where 
k = 6.283 m-l, a = 16.585 m, zo = 60 m (cf. (2.9)). For case I, in which the boundary 
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value is zero outside the lens (cf. (2.13)), the results are shown in figure 2(a)  for 
observation points on the focal line z = z,, and in figure 2 ( b )  for observation points 
on the x = 0 axis. Despite the significant departure from the requirement that  
a2 = 0(1), the discrepancy between the two theories is seen to be small. Similarly, 
a comparison of the results of the parabolic linear theory corresponding to cases I 
and I1 (cf. (2.13)-(2.14)) shows only small discrepancies. Thus, as far as the linearized 
theory is concerned, we may conclude that the parabolic theory is quite robust, and 
that there is no significant difference between the results of cases I and 11. 

3. Non-linear theory in the parabolic approximation 
The parabolic nonlinear theory was first developed by Yue & Mei (1980) for head-sea 

scattering of slender objects, and can be applied here with minor modifications. The 
governing equation is the cubic Schrodinger equation 

where A' is the actual amplitude of the wave a t  the position (2, z ) ,  and 

C cosh 4kd + 8 - 2 tanh2 kd 
c g  8 sinh4 kd K = k3- (3.2) 

with 
0 a0 0 

k ak ksinh2kd 
c=- ,  c =-= ($sinh2kd+ Ed), (3.3) 

and with d being the depth of the water. 

amplitude 
Introducing again the scaled coordinates X , Z ,  given in (2.8), and also a scaled 

A = A'/A,, (3.4) 

where A ,  is the amplitude of the wave as i t  emerges from the lens, we have 

aA i a2A 
2- - -- +iKlAI2A = 0, az a2ax2 

(3.5) 

K 
k3 ' 

K = Z, At K = kzo(kAo)2 - (3.6) 

where K is given in (3.2). 
The cubic nonlinear Schrodinger equation (3.5) is solved for the same boundary 

values as in (2.13) and (2.14). To remove small rapid oscillations in the numerical 
solutions, the jump at X = f 1 in the boundary value is smoothed over a few X-steps 
(AX). The numerical technique used is a nonlinear variant of the method due to 
DuFort & Frankel (1953), which is employed in favour of the scheme of Yue & Mei 
(1980) to minimize numerical oscillations in the solutions : 
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FICI-RE 3 .  Plots of the amplitude distribution ( A ( X ,  Z)l for rz = 5 and K = 0, 1 , 2 , 3  in the region 
(XI d 5 and 0 < Z < 2 .  The lens is at 2 = 0 and the geometrical focal point at 2 = 1. IA(X, Z)l takes 
on its maximum value at 2 = 0.83, 0.72, 0.66 and 0.61, for K = 0, 1 , 2  and 3 respectively. Thus 
we have a focal shift towards the lens, which is well known in linear theory ( K  = 0) for small values 
of n, but which is amplified because of nonlinear effects. It is seen t h a t  nonlinearity tends t o  broaden 
and flatten the envelope in the focal region. 

and the scheme is implicit. A no-flux boundary condition is applied in the X-direction, 
1.e. 

b 
ax U 
- _  i3A - 0  (IXl=-). (3.9) 

where 2a is the widt>h of the lens, and b is chosen sufficiently large so that the solution 
is unaffected by further increases in b .  A good value for b was found to be b = 5a. 
Alternatively one can require that 

(3.10) 

which is the plane Stokes wave. It is computationally easier to use (3.9); the results 
satisfy (3.10) when b/a  2 5. 
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The numerical scheme of (3.7) has been found to  be satisfactory when compared 
with the analytical parabolic solution of (2.15), in the linearized limit of K = 0. To 
give n preliminary idea of the nonlinear effects, we show in figure 3 the envelope 
1A(Y. Z)I for uz = 5 and K = 0, 1, 2, 3. The geometrical focal point is at Z = 1 
according to linear ray theory. Because of the small value of u we observe a focal 
shift which is well known in linear theory. This shift implies that  the maximum value 
of A ( S ,  2) is not at the geometrical focal point but is shifted towards the lens. For 
K = 0, 1, 2 ,  3, ,4(5,2) has its maximum value a t  2 = 0.83, 0.72, 0.66 and 0.61 
respectively. Thus nonlinear effects tend to  increase the focal shift. Also it is seen that 
nonlinearity tends to broaden and flatten the envelope in the focal region. 

4. Evolution of the spectral amplitude in the nonlinear theory 
In linear theory the angular spectrum, given by f ( k , , z )  in the exact theory (cf. 

( 2 . 4 ~ ) )  or by d(fx.Z) in the parabolic theory (cf. (2.10b)), does not change in 
magnitude from one line z = constant to another. Physically this means that, when 
we represent, for example, the wave q ( x ,  z )  as a superposition of plane waves that 
propagate in various directions k = {kx, (k2-k:)h) (cf. ( 2 . 4 b ) ) ,  then the complex 
amplitude f(k,,z) of each plane wave only changes its phase, not its magnitude, 
between two lines z = constant. In  nonlinear theory, IACfx, Z)l changes with 2, and 
we can use this change between two lines 2 = constant as a measure of nonlinear 
effects in that region. 

Since the angular spectrum a t  a line z = constant is the Fourier transform of the 
wave at  that line (cf. ( 2 . 4 b )  and (%.10c)), we see that the magnitude of the Fourier 
transform of the field does not change with z in the linear theory. For obvious reasons 
we call this quantity lf(k, ,  z)l or B( f x ,  2)l the spectral amplitude of the field. I n  regions 
far from the focal area in figure 1, the field is to a good approximation given by only 
one of the plane waves in ( 2 . 2 b )  or (2.10a).  This result follows by applying the method 
of stationary phase to (2 .2b )  or (2.10a). Let the focal line be a t  z = zo.  and write (2.46) 
in the form 

~ ( x ,  z )  = [q (k , )  dk,. (4.1) 

Further assume that g(k,)  varies slowly in comparison with exp (i$(k,)) for large 
r = [xz  + ( z  - zO)]+ .  Then the method of stationary phase is appropriate. One readily 
finds the stationary-phase point to be 

X k$ = k - ,  
r 

and further 

Substitution into the stationary-phase formula yields 

exp ( -+in) z-za,exp ( ik r )  
(2n)h r r: 

q ( x ,  z )  - 

(4.2) 

(4.3) 

Thus, a t  large distances r away from the focus, the field is locally a plane wave 
exp (ikr) ri with amplitude q ( k x / r ,  0). Therefore, far from the focus, the spertral 
amplitude is a direct measure of the directional distribution of the energy flux. Since 
the spectral amplitude remains constant in the linear theory, the directional 
distribution of the energy flux is the same before focusing the wave as after. 
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FIGURE 4(a, b ) .  For caption see facing page. 

I n  the nonlinear theory the principle of superposition no longer holds. Thus, if we 
compute the Fourier transform of the wave a t  line z = constant, we can no longer 
associate i t  with the complex amplitude of a single plane wave. However, if the 
nonlinearities are weak, as will be the case in regions far from the focus, we can to 
a good approximation claim that the spectral amplitude (the magnitude of the 
Fourier transform) represents the magnitude of the corresponding plane wave, and 
also that it is a good measure of the directional distribution of energy. 

From the considerations above i t  is clear that  one may obtain a measure of 
nonlinear effects by considering the evolution of the spectral amplitude in nonlinear 
theory : the larger the nonlinearities, the larger the change of the spectral amplitude 
between two lines z = constant. 



= 30 i 

Nonlinear focusing of surface waves by a lens 

fc) 

81 

FIQURE 4. Plots of the spectral amplitude IA(k,,z)l according to nonlinear theory ((3.5) with 
K = 1.55 and (3.9) and (4.2)) on different lines z = constant in the region between z = 0 (i.e. a t  the 
position of the lens in figure 1 (b) and z = 120 m (i.e. one focal distance beyond the geometrical focus 
in figure 1 b). The change in the spectral amplitude between two lines z = constant is a direct 
measure of the strength of nonlinear effects in that region. 

Using unscaled coordinates, we have for the angular spectrum in the parabolic 
theory (linear or nonlinear) 

m 

A(k,,z) = A(z,z)exp(-ik,x)dx. (4.5) 
-02 

We now restrict our attention to  case I1 (cf. (2.14)). Then, according to the solution 
of 93, the field is a plane Stokes wave for 1x1 2 b. Using (3.10), we may rewrite (4.5) 
as follows: 

b 

a(k, ,z)  = A(z,z)exp(-ik,x)dz 
-b 

(4.6) 

where S(z) is the Dirac delta function and sinc (z) = sin ( z ) / x .  The integral in (4.6) 
may be computed efficiently by the use of a fast-Fourier transform (FFT) algorithm. 

In the linear parabolic theory, the spectral amplitude is obtained by substituting 
(2.14) into (2.10b). The result is 

A(k,,z = O ) a A o { S ( g )  -2sinc (ak , )+2~-~ l :xp[ i (a+pt+y t ' ) ]d t ) ,  (4.7) 
2 

The integral in (4.7) may be computed efficiently by means of the algorithm that is 
described after (2.21). 

As a check on our implementation of the FFT algorithm, we first computed 
a ( k , ,  t = 0) from (4.7). Then we computed i t  by substituting A(z,  0) from (2.14) into 



82 J .  J .  Stamnes and others 

(4.8) with b = 5a and employing the FFT algorithm. The spectral amplitudes 
IA(k,, z = 0)l resulting from these two computations were identical. 

Next we substituted the solution A ( z ,  z = constant) of (3.5) into (4.2) and used the 
FFT algorithm to compute B ( k , , z ) .  I n  these computations the values of v and K 
were similar to those in the experiment i.e. 8 = 28.805, K = 1.55 (cf. (2.9) and (3.6) 
with k = 6.283 m-l, a = 16.585 m, zo = 60 m, A,  = 0.725 cm, d = 3 m) (wave 
steepness kAo = 0.0455). The results, which are displayed in figure 4, show how the 
spectral amplitude [A(&, z)l changes with z in the nonlinear case. 

We would of course expect that  the nonlinear effects play the largest role in the 
focal region, where the wave amplitude is large, and that their influence is small far 
away from the focal region. The results presented in figure 4 agree well with our 
expectations. Figure 4(a) shows the change in the spectral amplitude over the 
distance from z = 0 to z = 50 m. We see that from the line z = 0 to the line 
z = 29.25 m, there is practically no change. Thus linear theory is adequate to  describe 
the propagation between the lens and the line z = 29.25 m. This fact is utilized in 
5 5.5.  In  contrast, the change in the spectral amplitude is quite pronounced as we pass 
through the focal region from the line z = 50 m to the line z = 70 m (figure 4b) .  
Beyond the line z = 80 m the change in IA(k,, z)l is again smaller, and beyond z = 
110 m there is practically no change. Thus we may conclude from our findings that 
for z < 29.5 m or z > 110 m the linear theory is adequate. 

A comparison of the spectral amplitude at z = 0 and z = 120 m (figure 4c) shows 
that the overall effect of the nonlinearities in the parabolic focusing problem is to  
cause a directional redistribution of the energy flux. We see that a ( k ,  = 0, z = 120 m) 
is much larger than A(k ,  = 0, z = 0), which according to  our earlier discussions means 
that the energy flux is considerably more peaked in the forward direction after 
passage through the focal region. 

5. The experiment 
Before describing the experimental procedure and the processing of the experimental 

data in detail, we give a brief explanation of the essential steps. 
The wave field is recorded simultaneously in 72 positions on a line z = constant 

in the measurement area in figure 1 ( b )  by means of an array of pressure transducers. 
The spacing between the transducers is 0.5 m. Stationarity of the wave field is 
assumed in a measurement period, during which the transducer array is moved 
through the measurement area shown in figure l ( b ) ,  and recordings are taken a t  
successive lines z = constant with a spacing of 0.5 m. An estimate of the wave 
amplitude right behind the lens, at the line z = 0 in figure 1 ( b ) ,  is obtained from 
simultaneous measurements of the wave by a two-dimensional array of pressure 
transducers. The height of the incident wave may change during the scanning of the 
measurement area, and we use this estimate to  normalize it. This array, which consists 
of 3 x 6 transducers, is placed about 50 wavelengths away from the wavemaker. 
Because of structural obstructions, no probes were placed immediately behind the 
lens until at the line z = 29.25 m. 

The signal recorded by each pressure transducer is stored on magnetic tape for 
subsequent processing. The objective of the processing is to  obtain the wave front 
a t  the frequency of the wave generator a t  each recording line z = constant. To that 
end, one first uses a FFT algorithm to estimate the temporal Fourier component of 
the recorded signals at the frequency of the wavemaker. Then one may again employ 
a FFT algorithm to compute the angular spectrum of the field at a given recording 
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line z = constant, and use spatial frequency filtering to  remove wave components that  
are due to  reflections from the walls of the basin. This is simply done by suppressing 
that part of the angular spectrum for which the spatial frequency IkxI is larger than 
0 .5k ,  and it  implies that  every plane wave is removed whose direction of propagation 
makes an angle larger than 30' with the z-axis in figure 1 ( b ) .  (As shown in figure 4, 
the energy content of the angular spectrum is negligible for lk,l 2 0.5k.)  The inverse 
Fourier transform is then applied to the filtered spectrum to obtain the processed 
wave. 

5.1. The experimental set-up 

Figure 1 shows the experimental set-up in the basin. The waves incident upon the 
lens are generated by a conically shaped wavemaker. It oscillates vertically on a 
cylindrical shaft along the cone axis with its apex pointing downwards. The diameter 
of the cone at the mean water level is 4 m, and the cone angle is 30'. To eliminate 
reflections the basin is lined with a wave-damping beach which is made of corrugated 
aluminium plates with ridges of corrugation perpendicular to  the shore. The slope 
of the beach near the water surface is less than 1 : 10, and the beach stretches more 
than 7 metres into the water. Reflections from the shore were never seen to influence 
the measurements. 

The wavemaker generates higher-harmonic components which interact nonlinearly 
in its near zone. But, a t  a distance of about 50 wavelengths, these higher harmonics 
are negligible (see bottom of figure 5 )  because of their faster rate of radial attenuation 
(at large distances r from the wavemaker the nth harmonic goes as (nkr)-i for 
n = 2 , 3 , 4  ,... ). 

To measure the wave height we use piezoresistive pressure transducers, which in 
our application have a resolution better than 0.1 mmH,. The point of measurement 
of each probe is adjusted to  be at 70 mm below the mean water level. This point is 
located a t  the end of a steel tube, 2 mm in diameter, which is connected to the 
pressure-sensitive surface of the transducer by stiff tubing filled with water. Each 
measurement probe has a resonance frequency above 20Hz, while the cutoff 
frequency of the anti-aliasing filter of the recording system is about 4 Hz. The 
frequency of the wavemaker movement is 1.25 Hz with less than 10% harmonic 
distortion. 

A total number of 90 probes are used in the experiment. 72 probes are placed on 
a movable boom, which is parallel to the x-axis in figure 1 ( b ) .  The spacing between 
the probes on the boom is 0.5 m. To scan out the measurement area in figure 1 ( b ) ,  
one displaces the boom parallel to itself and records the wave height a t  successive 
lines z = constant with a spacing of 0.5 m. The remaining 18 probes are placed in front 
of the lens in a two-dimensional array of 3 x 6 elements, and constitute a phased array 
which is focused on the wavemaker. The records are used to check that the wave crests 
are circular arcs centred a t  the wavemaker. 

5.2. Error sources and calibrations 

The experimental set-up is designed so as to ensure maximum reliability in the 
measurement of the wave height in the measurement area in figure 1 relative to  the 
wave height of the wave produced by the wavemaker. Therefore all wave-height 
measurement probes are identical, have identical mountings, and their signals are 
recorded in identical manners. The point of measurement of each probe is positioned 
to within k0.5 mm around a common depth of 70 mm below the mean water level. 
Assuming linear waves with a wavelength of 1 m, we find that this uncertainty in 
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the depth positioning leads to an uncertainty in the measurement of the wave height 
of less than 1 yo. The lens in figure 1 consists of horizontal plates, whose depths have 
been positioned to the same accuracy of k0.5 mm. 

To monitor the water level in the basin, one uses electrical conduction probes with 
a resolution of 0.1 mm in a region of 100 mm above and below the mean water level. 
The uncertainty in the position of the boom is Az = f 3 cm. 

Each recording is controlled by an accurate clock pulse from one of the computer 
processors. The movement of the wavemaker is controlled by a microprocessor, while 
the data logging is managed by a mini-computer. These have separate clocks. Each 
recording lasts 102.4 s and contains 1024 samples. The recordings that constitute one 
time sample of each of the 90 transducers are made sequentially in a sampling period 
of less than 0.1 s, and are time-shifted in the data processing to compensate for the 
sequential scanning of the data channels. 

In  practice, it  turns out, however, that  the accuracy of the experiment is not 
limited by technical specifications, as listed above. Instead it is determined by 
environmental factors like winds and currents in the basin. Also, algal growth 
sometimes is the cause of defects in transducers. Winds have three major effects. First, 
wind-driven waves produce noise waves in the basin. Secondly, a steady wind gives 
rise to a current in the basin, which in turn causes a Doppler shift on the wave field 
produced by the wavemaker. And, thirdly, stronger winds generate seiches in the basin 
that cause fluctuations in the water level a t  each pressure transducer, thus modulating 
its sensitivity as a wave height probe. This third effect, however, is so weak that it 
plays a role only in cases in which the experiment already has been spoiled by currents 
in the basin. I n  FJFJ5.4 and 5.5 we discuss measures taken in the data processing to 
reduce effects of winds and currents. 

5.3. The validity of the stationarity approximation 

A typical phenomenon in the nonlinear propagation of gravity waves is the 
Benjamin-Feir instability, according to  which a wave spectrum develops sidebands, 
causing a modulation of the wave. Similar effects have been seen in this focusing 
experiment a t  large amplitudes. Therefore we would like to determine to  what extent 
these effects influence our assumption of a stationary wave field. Figure 5 shows the 
amplitude spectrum of the 102.4 s time series of one of the transducers as i t  moves 
through the focal region on a line parallel to the optical axis of the lens. The focal 
point is approximately 60 m from the lens. It is evident that  sidebands appear as 
the waves are passing through the focal region. But the influence on the amplitude 
estimate in the focal region is less than a few percent, and the typical form of the 
waves in this region is maintained. 

Other phenomena which may limit the validity of the stationarity approximation, 
are small, more or less random currents in the basin. Such currents may be due to 
wind or convection in the water. I n  our experiment they give rise to a Doppler shift 
of the observed wave frequency when the wave passes over a transducer. The effect 
of this shift may be interpreted as a change in the index of refraction. To obtain an 
estimate of the uncertainty in the position of the focus, we investigate how such 
random currents may influence the propagation of the wave. This is done by using 
a gradient index ray tracing program to show how the associated refractive index 
alters the form and position of the focal area. 

To explain the observed Doppler shift and its equivalent refractive-index change, 
we consider a transducer at rest in a stationary monochromatic wave field of 
frequency v and phase velocity c .  I n  the linear theory we may decompose this wave 
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FIGITRE 5. Illustration of the Benjamin-Feir instability. The figure shows the frequency spectrum 
of the wave a t  different position3 (r ,  z )  in the test basin (cf. figure 1 b ) .  Sidebands are seen to  develop 
as the wave passes through the focal region. 
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FIGURE 6. Simultaneously measured Doppler shifts at  different positions in the test basin. The 
values of the shifts are given per mile relative to the mean frequency. 

field into an angular spectrum of plane waves (cf. ( 2 . 2 b ) ) ,  and i t  therefore suffices 
here to consider one single plane wave. The phase velocity c is the speed with which 
wave crests pass the transducer, i.e. c = h/T,  where the wavelength h and the period 
T are respectively the distance between two neighbouring wave crests and the time 
that elapses between their passage over the transducer. 

Suppose now that; a stationary current of velocity v makes the water drift by the 
transducer. Then the speed r’ by which wave crests pass the transducer is 

c’ = c+vcos6, cos6 = i i -  9 ,  

where ii and ii are unit vectors in the direction of the current and in the direction 
of propagation of the plane wave respectively. The observed period is T = h/c’ ,  
corresponding t,o a frequency v’ = c’/h and a relative Doppler shift 

AV/V = ( I”  - V ) / V  = C’/C - 1 .  

Jn the absence of currents we define the index of refraction by n(x, z )  = c(x, z ) / c o ,  
where co is the phase velocity of the wave in water of infinite depth, and c ( x ,  z )  is the 
(depth-dependent) phase velocity a t  the position ( x ,  z ) .  Similarly, in the presence of 
acurrent, wedefine therefracti,veindex asn’(s, z )  = c’(x, z)/co = n[x, z )  [c’(s, z ) / c ( x ,  z ) ] .  
The relation between the relative Doppler shift Aii/ii, caused by the current in the 
basin, and the relative refractive index change An/n is thus 

Note that n’, strictly speaking, depends on the angle between the direction of 
propagation ii of the plane wave and the direction 6 of the current. 

Figure 6 gives the Doppler shift per mile relative to  the measured frequency of the 
wavemaker a t  different transducer positions in a sample of several recordings. ’3’ L ince 
the whole experiment took about 8 h during which the frequency shift might have 
changed, our estimate is only representative and not exact. The currents may cause 
a displacement of the focal region, particularly in the transverse direction. To give 
an explanation of th i s  transverse displacement, we use ray-tracing techniques and 
the Doppler shifts observed in figure 6. The maximum relative frequency difference 
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(b  ) 

FIGURE 7. Illustration of the sideways displacement of the focal area that may occur if there is 
a shear current in the basin between the lens and the focus. As explained in the text, the effect 
of the current may be analysed in terms of an equivalent gradient index medium. Ray traces 
through the equivalent gradient index medium are shown in (a )  and ( b )  for the cases in which the 
wavemaker is positioned on-axis and -0.8 m off-axis respectively. 

in the recording is approximately 0.5 Yo. We assume that this difference is due to a 
shear current that  runs parallel to the optical axis with a speed that decreases linearly 
from a maximum value a t  one end of the lens to zero a t  the optical axis and then 
increases again to the same maximum speed in the opposite direction a t  the other 
end of the lens. 

We now make the simplifying assumption that n' does not depend on cos0 = f i .8 ,  
i.e. as far as the computation of n' is concerned we assume that the wavefront 
emerging from the lens in figure 6 is parallel to the lens and hence to the direction 
of the assumed current. As a result, we have a phase velocity for the stationary wave 
field that varies linearly in the direction transverse to the optical axis. Thus, in our 
ray-tracing model we assume that the index of refraction varies linearly in the 
x-direction behind the lens in figure 6, with a minimum value of 0.995 at 
J: = + 16.585 m, corresponding to one edge of the lens, and a maximum value of 1.005 
at x = - 16.585 m, corresponding to the other edge of the lens. As a further 
simplification, we assume that there are no currents between the wavemaker and the 
lens and that the lens is perfect in the sense that it transforms the incident diverging 
circular wavefront into a converging circular wavefront with focus at the geometrical 
image point. If the wavemaker is situated off-axis in figure 6, then the geometrical 
image point is the intersection point between the image line z = 60 m and the line 
from the wavemaker through the centre of the lens. 

To determine how the gradient index medium behind the lens displaces the focal 
point we use an algorithm for ray tracing in inhomogeneous media to trace rays 
through it. As a starting point for this ray trace we make use of the assumption 
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mentioned above, that just behind the lens the rays are directed towards the 
geometrical focal point. However, as the rays pl-ogress towards the image area they 
are bent because of the variation in the refractive index. The results of such ray traces 
are shown in figures 7 ( a )  and ( b )  for the cases in which the wavemaker lies 
respectively on-axis and - 0.8 m off-axis. We see that the assumed current distribution 
tends to displace the position of the focal point approximately 1 m sideways. In  
addition the gradient index medium is seen to introduce aberrations, which contribute 
additional uncertainty, as far as an accurate positioning of the image point is 
concerned. However, from figure 7 (a b )  we can conclude that the image is shifted 
sideways a distance of about 1.3 m, due to the assumed current distribution behind 
the lens. Thus, in the actual experiment, where the wavemaker was situated a t  
x = -0.8 m, we would expect the image to lie in the region between x = -0.5 m and 
x = 2.1 m. In  field applications, natural currents can also displace the focal area and 
affect wave power operation. For a swell of 10 s period, a current of maximum velocity 
of 0.1 m/s a t  the tip of the lens can give a comparable displacement of the focal point 
relative to the wavelength for this simple, but impractical, lens geometry. 

5.4. Processing and noise reduction 

The main objective of the signal processing is to obtain from the experimental data 
a wave field that is as close as possible to a stationary monochromatic one. In  
addition, processing is employed to  make the wave field as insensitive as possible to 
noise in the electronics or due to winds, currents and spurious waves in the basin. 
The details of the processing procedure are given in the appendix. 

5.5.  Estimation of the wave at the lens 

To determine the amplitude and phase of the circular wave generated by the 
wavemaker a t  its main frequency we use a phased array of 3 x 6 transducers, which 
are placed between the wavemaker and the lens in figure 1 (b ) .  By processing the data 
from this array in the right way, one suppresses waves that are reflected from the lens 
and the walls of the basin, and other spurious waves. The phased array thus provides 
us with a method for determining the wave generated by the wavemaker, without 
making any assumptions about the wavemaker and its movement. However, we use 
the recorded wavemaker signal to check its stability, and by comparisons between 
the estimated wave at the wavemaker and the recorded signal we can check if the 
wave generated by the wavemaker is distorted by winds or currents. I n  the 
phased-array calculations, one uses the narrowband stationary signal that  is obtained 
by processing the recorded signal as explained briefly in $5.4 and more fully in the 
appendix. Thereby one supresses noise that falls outside the spectral window 
employed in the spectral-estimation method given in the appendix. It is beyond the 
scope of this paper to explain in detail how the phased array works. The details may 
be found in L~vhaugen (1981 b ) .  

The height of the incident wave may change during the scanning of the measurement 
area in figure 1 (b). Therefore, we use the estimated wave height, as determined by 
the phased array, to  normalize the incident wave height. 

In order to specify the initial data along z = 0,t one needs to obtain an estimate 
of the wave amplitude right behind the lens based on measurements a t  z = 29.25 m ; 
this is done in the following manner. We first assume that the lens is perfect in the 
sense that i t  creates a converging circular wave whose relative amplitude distribution 

t We could have chosen to regard z = 29.25 rn as the initial line. 



Nonlinear focusing of surface waves by a lens 

3 - 4 . 1  

89 

\ 

t 
K =  1.55 

3 4  

I - 
-15 -10 -5 0 5 10 15 20 

3-, , K=1.40  i 
I I I I I I )  

-15 -10 -5 0 5 10 15 20 

X 

FIGURE 8. Wave heights on the line z = 60.25 m, according to linear theory (2.15), dashed curves, 
nonlinear theory (3 .5)  and (3.9), dotted curves, and experiment (solid curves). The three different 
values of the nonlinearity parameter K (cf. ( 3 4 ,  (3.6)) were obtained from the measured data as 
explained in the text. The experimental curves are shifted a distance A in the z-direction to obtain 
the best fit with the theories. As explained in the text, the shifts d are probably caused by 
wind-generated currents in the basin. 

across the aperture is the same as for the incoming diverging circular wave. The 
reference amplitude A ,  a t  ( 0 , O )  is found by assuming that the linear theory is a good 
approximation between the lines z = 0 and z = 2.25 m. By equating the theoretical 
energy flux a t  z = 29.25 m to the energy flux implied from the measurements, we find 
A,. Several measurements were made along lines slightly behind z = 29.25 m. 
From them we infer that  A ,  = 7.25f0.3mm. The corresponding K-values are 
K = 1.55f0.15 (cf. (3.6)). 

The initial condition for the nonlinear calculation is in the form of (2.14). In  the 
experiments the waves outside the aperture were diverging circular waves, but this 
discrepancy should not affect a region not too far from the optical axis (see the last 
sentence of $ 2 ) .  

6. Comparison between experimental and theoretical results 
Comparisons between experimental results, recorded and processed as described 

in $5, and results of parabolic linear theory ((2.15)) and parabolic nonlinear theory 
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FIGURE 9. Comparisons between wave heights according to linear theory (2.15), dashed curves), 
nonlinear theory (3 .5)  with K = 1.55 and (3.9), dotted curves), and experiment (solid curves) a t  
different lines z = constant (cf. figures 1 ( b )  and 8). The shift A is as explained in the legend on 
figure 8. 

((3.5) and (3.9)) are presented in figures 8-10. The theoretical results pertain to a lens 
surrounded by deep water (case 11) with initial data as specified in (2.14). The 
amplitude A ,  (cf. (3.4)) right behind the lens in figure 1 (b )  is estimated on the basis 
of the measured data in the manner explained at the end of 5 5. 

In figure 8, relative wave heights are plotted as obtained from the measured data 



Nonlinear focusing of surface ‘2cmfes by a lens 91 

I I I I I I I I I b  

-15 -10 -5 0 5 10 15 20 25 x 
J 

FIGURE 10. Comparison between the measured amplitude distribution and the distributions 
predicted by linear and nonlinear theory in the measurement area. The upper and lower figure show 
respectively the results of nonlinear theory ((3.5) with K = 1.55 and (3.9)) and linear theory 
((2.15)), and the figure in between shows the results obtained in the experiment. The geometry is 
the same as in figure 1 (b) .  

(solid curves), from the linear theory (dashed curves), and from nonlinear theory 
(dotted curves). Each experimental curve is shifted a distanc,e A in the x-direction 
to   a best possible fit between the results of theories and experiment. As 
explained in $5.3, the shift may be caused by wind-generated currents in the basin. 

We see from fig. 8 that  the nonlinear theory agrees much better with experiment 
than does the linear theory. It is also apparent that  the agreement between nonlinear 
theory and experiment is little affected by changes in the value of the nonlinearity 
parameter K within its estimated limits (cf. the discussion at the end of $5.5). 

Figure 9 shows the same kind of plots as in figure 8, but in this case the nonlinearity 
parameter K is constant, i.e. K = 1.55, while the distance z-z0  from the geometrical 
focus a t  zo = 60 m varies from one plot to  another. We see that far from the focus 
on the incident side, i.e. a t  z = 50.25 m, the difference between the three curves is 
small. As focus is approached, the deviation increases between linear theory on one 
hand and nonlinear theory and experiment on the other hand, and this deviation is 
maintained throughout the measurement area. 

4 FLM 135 
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In figure 10, three-dimensional plots are shown of the relative wave heights 
according to linear theory (lower figure), nonlinear theory with K = 1.55 (upper 
figure), and experiment, Apart from small asymmetries and a bending of the Z-axis 
in the experimental plot (which, as discussed earlier, may be caused by wind-generated 
currents in the basin) we again see a striking similarity between the results of 
nonlinear theory and experiment. 

7. Summary 
In this paper we have compared experimental results obtained by focusing 

relatively large-amplitude water waves with results of linear and nonlinear theories. 
Our findings may be summarized as follows. 

By comparing the results of the exuct linear theory with those of the parabolic linear 
theory, we have established that the parabolic theory is adequate to describe the 
focusing geometry in figure 1 ( b ) ,  in which the convergence angle is as large as 8, = 1 5 O .  
We also have found no significant difference in the results whether the lens in 
figure 1 ( b )  is placed in the open sea or fills a hole in a breakwater. 

The change in the spectral amplitude from one line z = constant to another is a 
quantitative measure of the role of nonlinear effects. As expected, the nonlinear effects 
are found to be largest in the focal region. The overall effect of the nonlinearities is 
to make the energy flux much more peaked in the forward direction after the wave 
has passed through the focal area. 

The amplitude variations according to the nonlinear theory compare well with 
those of experiments, while there is some discrepancy between the results of linear 
theory and experimental results. The slight tilt of the axis (cf. figure 10) is attributed 
to possible wind-induced currents in the basin. 

As a result of the nonlinear effects, the transverse extent of the focal area is about 
1.5-2 times as large as one would predict from linear theory. Since, however, the 
transverse extent of the focal area is still very small compared to the size of the lens, 
the efficiency of the lens as an energy concentrator is not significantly deteriorated 
by the nonlinear effects. 

In these experiments the waves were generated from a point source; the wave- 
steepness just behind the lens was rather small, kA, = 0.0455. In coastal applications 
the incident waves are more likely plane and the steepness can be much larger, so 
that nonlinearity may lead to breaking in the focal region. Such a strong nonlinearity 
is beyond the scope of the present study. 
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discussions on several topics of the paper. Also, we thank K. Lovaas and S. Ljunggren 
for conducting the experiment and H. Heier for providing the ray traces in figure 8. 
Support of this research was provided by the Royal Norwegian Ministry of Petroleum 
and Energy to the Central Institute for Industrial Research and by the U.S. 
Department of Energy and the Office of Naval Research to Massachusetts Institute 
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Appendix 
In this appendix we present the details of the signal-processing procedure we have 

applied to the experimental data in order to obtain a wave field that is as close as 
possible to a stationary, monochromatic one. 
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FIGURE 1 1 .  Data window used in the estimation of the power spectrum (cf. (A 4)). 

As mentioned in the text, a stationary wave field is constructed from separate 
pressure recordings a t  72 different positions on various lines z = constant parallel to 
the lens (cf. figure 1) .  Each recording lasts 102.4 s, and the time delay between the 
recordings a t  two neighbouring lines z = constant is a couple of minutes. 

First, one estimates the power spectrum of each recording, and uses the value of 
the power spectrum at the frequency of the wavemaker as an unbiased estimate 
of the wave amplitude a t  the position in which the recording is made. An estimate 
of the phase of the recorded signal relative to the phase of the wavemaker signal is 
o'uiiiined by comparing the two periodograms. 

Since our aim is to  obtain a quasi-monochromatic wave field, one would normally 
suppress noise by using a narrow-bandpass filter. One could achieve this by using the 
discrete Fourier transform component at the wavemaker frequency of a recording 
of a very long duration. However, the observed Doppler shift would make this 
procedure unreliable. With a recording of 102.4 s duration the spectral window would 
be so narrow that part of the signal power is likely to fall outside of it. 

The best estimate of the energy in the received signal is obtained by integrating 
the power spectrum under the spectral peak near the wavemaker frequency. 
However, since this procedure is rather time eonsiiming in practice, a simpler 
procedure would be desirable. In  the search for such a procedure we have tried 
estimates based on using the peak value of the power spectrum and data windows 
of different shapes and lengths. I n  tests performed on the recorded data, comparisons 
between estimates obtained as just described and estimates obtained by integrating 
the power spectrum have shown that the use of triangular data windows of 25.6 s 
duration gives the most stable estimates of the signal energy. I n  other words, the 
signal energy estimated by using the peak value of the power spectrum in combination 
with a triangular data window of 25.6 s agrees well with that obtained by integrating 
the power spectrum under the spectral peak using a 102.4 s window. 

The formula we have used to compute an estimate of the stationary-wave 
amplitude A at a given observation point is as follows : 

where the power spectrum B( f y )  is 

with 

(FFT (d(nAt)  w,(nAt))12, 
1 At max _ _  

B ( f g  ) - K Z I N C ' ,  

d(nAt)  = s ( ( j ( M - l ) + n ) A t ) ,  
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1 N-1 M ( M +  2) 

NTL-0 3N(M+ 1 )  ' 
u, = - w"n) = 

and 
M = 256 = length of data window, 

N' = 512 = FFT length, 

At = 1024 = length of recording, 

t = 0.1 s = sampling time, 

N 
M 

K = - = 4 = number of spectra averaged. 

The window function wz(n )  in (A 4) is illustrated in figure (1  1). 
The phase $o of the narrowband signal is given in terms of the phase Bo a t  frequency 

fo of the averaged periodogram by the formula 

where M ,  At and K are given above. 
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